Problem A. 10

By explicit construction of the matrices in question, show that any matrix T can be written
(a) as the sum of a symmetric matrix S and an antisymmetric matrix A ;
(b) as the sum of a real matrix R and an imaginary matrix M ;
(c) as the sum of a hermitian matrix H and a skew-hermitian matrix K .

Solution

Part (a)
Here the aim is to find a symmetric matrix S and an antisymmetric matrix A such that

$$
\begin{equation*}
\mathrm{T}=\mathrm{S}+\mathrm{A} . \tag{1}
\end{equation*}
$$

Take the transpose of both sides.

$$
\begin{align*}
\widetilde{\mathrm{T}} & =\widetilde{\mathrm{S}+\mathrm{A}} \\
& =\widetilde{\mathrm{S}}+\widetilde{\mathrm{A}} \\
& =(+\mathrm{S})+(-\mathrm{A}) \\
& =\mathrm{S}-\mathrm{A} \tag{2}
\end{align*}
$$

Add the respective sides of equations (1) and (2) to eliminate A.

$$
\mathrm{T}+\widetilde{\mathrm{T}}=2 \mathrm{~S}
$$

Solve for S .

$$
\mathrm{S}=\frac{\mathrm{T}+\widetilde{\mathrm{T}}}{2}
$$

Subtract the respective sides of equations (1) and (2) to eliminate S.

$$
\mathrm{T}-\widetilde{\mathrm{T}}=2 \mathrm{~A}
$$

Solve for A.

$$
\mathrm{A}=\frac{\mathrm{T}-\tilde{\mathrm{T}}}{2}
$$

Part (b)

Here the aim is to find a real matrix R and an imaginary matrix M such that

$$
\begin{equation*}
\mathrm{T}=\mathrm{R}+\mathrm{M} . \tag{3}
\end{equation*}
$$

Take the complex conjugate of both sides.

$$
\begin{align*}
\mathrm{T}^{*} & =(\mathrm{R}+\mathrm{M})^{*} \\
& =\mathrm{R}^{*}+\mathrm{M}^{*} \\
& =(+\mathrm{R})+(-\mathrm{M}) \\
& =\mathrm{R}-\mathrm{M} \tag{4}
\end{align*}
$$

Add the respective sides of equations (3) and (4) to eliminate M .

$$
\mathrm{T}+\mathrm{T}^{*}=2 \mathrm{R}
$$

Solve for R.

$$
\mathrm{R}=\frac{\mathrm{T}+\mathrm{T}^{*}}{2}
$$

Subtract the respective sides of equations (3) and (4) to eliminate R.

$$
\mathrm{T}-\mathrm{T}^{*}=2 \mathrm{M}
$$

Solve for M.

$$
\mathrm{M}=\frac{\mathrm{T}-\mathrm{T}^{*}}{2}
$$

Part (c)

Here the aim is to find a hermitian matrix H and a skew-hermitian matrix K such that

$$
\begin{equation*}
\mathrm{T}=\mathrm{H}+\mathrm{K} . \tag{5}
\end{equation*}
$$

Take the hermitian conjugate of both sides.

$$
\begin{align*}
\mathrm{T}^{\dagger} & =(\mathrm{H}+\mathrm{K})^{\dagger} \\
& =\mathrm{H}^{\dagger}+\mathrm{K}^{\dagger} \\
& =(+\mathrm{H})+(-\mathrm{K}) \\
& =\mathrm{H}-\mathrm{K} \tag{6}
\end{align*}
$$

Add the respective sides of equations (5) and (6) to eliminate K.

$$
\mathrm{T}+\mathrm{T}^{\dagger}=2 \mathrm{H}
$$

Solve for H.

$$
\mathrm{H}=\frac{\mathrm{T}+\mathrm{T}^{\dagger}}{2}
$$

Subtract the respective sides of equations (5) and (6) to eliminate H .

$$
\mathrm{T}-\mathrm{T}^{\dagger}=2 \mathrm{~K}
$$

Solve for K.

$$
\mathrm{K}=\frac{\mathrm{T}-\mathrm{T}^{\dagger}}{2}
$$

